Powered By Blogger

Jumat, 04 Februari 2011

Prosedur Analisis Pengujian Hipotesis


Penelitian Pendidikan Matematika :
PENGARUH PEMBERIAN TUGAS MEMBUAT PERTANYAAN  SECARA BERPASANGAN TERHADAP PRESTASI BELAJAR MATEMATIKA SISWA

       rumusan masalah
1.      Bagaimanakah prestasi belajar matematika siswa yang diberi tugas membuat pertanyaan secara berpasangan sebelum pembelajaran?
2.    Bagaimanakah prestasi belajar matematika siswa yang menggunakan metode ekspositiri?
3.    Apakah terdapat pengaruh pemberian tugas membuat pertanyaan secara berpasangan sebelum pembelajaran terhadap prestasi belajar matematika siswa.
        Hipotesis Penelitian
       “Terdapat pengaruh pemberian tugas membuat pertanyaan secara  berpasangan terhadap prestasi belajar matematika siswa”.
 Prosedur Analisis Pengujian Hipotesis
 Langkah-langkahnya sebagai berikut:
1.     Analisis Univariat/Deskriptif yaitu untuk menjawab rumusan masalah nomor 1 dan 2 digunakan statistik sebagai berikut:
a.       Menentukan nilai maksimum dan minimum data kedua kelas.
b.      Menentukan rentang (jangkauan).
c.       Menghitung rata-rata (mean) kedua kelompok.
d.      Menghitung standar deviasi kedua kelas.
e.       Membuat diagram batang
2.      Analisis Bivariat/Inferensial yaitu untuk menjawab rumusan masalah nomor 3 digunakan langkah-langkah statistik sebagai berikut:
a.       Menghitung rata-rata skor
b.      Menghitung deviasi standar (simpangan baku dari masing-masing kelompok, untuk mengetahui penyebaran kelompok data)
c.       Uji Normalitas
Uji normalitas bertujuan untuk mengetahui apakah populasi berdistribusi normal atau tidak. Uji normalitas dilakukan terhadap tes akhir yang diperoleh dari postes kelompok eksperimen dan kelompok kontrol. Uji normalitas ini menggunakan uji chi kuadrat dengan rumus sebagai berikut:
Dimana:
Ei   : Frekuensi ekspetasi
Oi   : Frekuensi observasi
d.      Uji Homogenitas Dua Varians
Uji homogenitas dilakukan dengan tujuan untuk mengetahui apakah varians populasi homogen atau tidak. Untuk pengujian homogenitas digunakan uji F yang rumusnya sebagai berikut:
Keterangan:
Vb   : Varians terbesar
Vk    : Varians terkecil
e.       Uji kesamaan dua rata-rata dilakukan dengan langkah-langkah sebagai berikut:
a)      Mencari deviasi standar gabungan dengan rumus :
Keterangan:
s    : Deviasi standar gabungan
n1  : Ukuran sampel yang variansnya besar
n2  : Ukuran sampel yang variansnya kecil
b)      Mencari nilai t dengan rumus
c)      Mencari derajat kebebasan (db), dengan rumus
db = n1 + n2 – 2
d)     Mencari niai t dari daftar
e)      Pengujian hipotesis
f.       Jika salah satu atau kedua data tidak berdistribusi normal maka dapat dilanjutkan dengan uji U Mann Whitney, karena dalam penelitian ini memakai dua kelas sebagai pembanding. Yaitu dengan rumus sebagai berikut:
dan
Keterangan:
n1  : Jumlah sampel 1
n2  : Jumlah sampel 2
U1             : Jumlah peringkat 1
U2             : Jumlah peringkat 2
R1 : Jumlah rangking pada sampel n1
R2 : Jumlah rangking pada sampel n2
g.      Jika kedua data normal tetapi homogenitas varians tidak terpenuhi maka digunakan uji t` yaitu :
Keterangan:
   : Skor rata-rata kelompok eksperimen
   : Skor rata-rata kelompok kontrol
n1    : Banyak data kelompok eksperimen
n2    : Banyak data kelompok kontrol
   : Varian data kelompok eksperimen
   : Varian data kelompok kontrol

Tidak ada komentar:

Posting Komentar